SNSB
Summer Term 2013
Ergodic Theory and Additive
Combinatorics
Laurenţiu Leuştean
11.06.2013

Seminar 7

(S7.1)
(i) $1_{X}: X \rightarrow X$, the identity on (X, \mathcal{B}, μ), is an invertible measure-preserving transformation.
(ii) The composition of two measure-preserving transformations is a measure-preserving transformation.
(iii) If (X, \mathcal{B}, μ, T) is a MPS, then $\mu\left(T^{-n}(A)\right)=\mu(A)$ for all $A \in \mathcal{B}$ and all $n \geq 1$.
(iv) If (X, \mathcal{B}, μ, T) is invertible, then $\mu\left(T^{n}(A)\right)=\mu(A)$ for all $A \in \mathcal{B}$ and all $n \in \mathbb{Z}$.
(S7.2) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be probability spaces and $T: X \rightarrow Y$ be bijective such that both T and T^{-1} are measurable. The following are equivalent
(i) T is measure-preserving.
(ii) $\mu(B)=\nu(T(B)))$ for all $B \in \mathcal{B}$.
(iii) T^{-1} is measure-preserving.
(S7.3) Let $(X, \mathcal{B}),(Y, \mathcal{C}),(Z, \mathcal{D})$ be measurable spaces, $T: X \rightarrow Y, S: Y \rightarrow Z$ be measurable transformations.
(i) $U_{S \circ T}=U_{T} \circ U_{S}$.
(ii) U_{T} is linear and $U_{T}(f \cdot g)=\left(U_{T} f\right) \cdot\left(U_{T} g\right)$ for all $f, g \in \mathcal{M}_{\mathbb{C}}(Y, \mathcal{C})$.
(iii) If $f: Y \rightarrow \mathbb{C}, f(y)=c$ is a constant function, then $U_{T}(f)(x)=c$ for every $x \in X$.
(iv) $U_{T}\left(\mathcal{M}_{\mathbb{R}}(Y, \mathcal{C})\right) \subseteq \mathcal{M}_{\mathbb{R}}(X, \mathcal{B})$.
(v) If $f \in \mathcal{M}_{\mathbb{R}}(Y, \mathcal{C})$ is nonnegative, then $U_{T} f$ is nonnegative too, hence U_{T} is a positive operator.
(vi) For all $C \in \mathcal{C}, U_{T}\left(\chi_{C}\right)=\chi_{T^{-1}(C)}$.
(vii) If f is a simple function in $\mathcal{M}_{\mathbb{C}}(Y, \mathcal{C}), f=\sum_{i=1}^{n} c_{i} \chi_{C_{i}}, c_{i} \in \mathbb{C}, C_{i} \in \mathcal{C}$, then $U_{T} f$ is a simple function in $\mathcal{M}_{\mathbb{C}}(X, \mathcal{B}), U_{T} f=\sum_{i=1}^{n} c_{i} \chi_{T^{-1}\left(C_{i}\right)}$.
(S7.4) Let (X, \mathcal{B}) be a measurable space and $T: X \rightarrow X$ be measurable.
(i) $U_{1_{X}}=1_{\mathcal{M}_{\mathbb{C}}(X, \mathcal{B})}$
(ii) $U_{T^{n}}=\left(U_{T}\right)^{n}$ for all $n \in \mathbb{N}$.
(iii) If $T: X \rightarrow X$ is bijective and both T and T^{-1} are measurable, then U_{T} is invertible and its inverse is $U_{T^{-1}}$. Furthermore, $U_{T^{n}}=\left(U_{T}\right)^{n}$ for all $n \in \mathbb{Z}$.
(S7.5) Let (X, d) be a compact metric space and $T: X \rightarrow X$ be a continuous mapping. For all $l \geq 1$, there exists a multiply recurrent point for T, T^{2}, \ldots, T^{l}.
(S7.6) For any $A \in \mathcal{B}$, let us recall that

$$
\limsup _{n \rightarrow \infty} T^{-n}(A)=\bigcap_{n \geq 1} \bigcup_{i \geq n} T^{-i}(A)
$$

Then
(i) $\limsup _{n \rightarrow \infty} T^{-n}(A)$ is T-invariant.
(ii) $\mu\left(A \Delta \limsup _{n \rightarrow \infty} T^{-n}(A)\right) \leq \sum_{k=1}^{\infty} k \mu\left(A \Delta T^{-1}(A)\right)$. In particular, $\mu\left(A \Delta T^{-1}(A)\right)=0$ implies $\mu\left(A \Delta \limsup _{n \rightarrow \infty} T^{-n}(A)\right)=0$.

