SNSB Summer Term 2013 Ergodic Theory and Additive Combinatorics Laurențiu Leuștean

11.06.2013

Seminar 7

(S7.1)

- (i) $1_X : X \to X$, the identity on (X, \mathcal{B}, μ) , is an invertible measure-preserving transformation.
- (ii) The composition of two measure-preserving transformations is a measure-preserving transformation.
- (iii) If (X, \mathcal{B}, μ, T) is a MPS, then $\mu(T^{-n}(A)) = \mu(A)$ for all $A \in \mathcal{B}$ and all $n \ge 1$.
- (iv) If (X, \mathcal{B}, μ, T) is invertible, then $\mu(T^n(A)) = \mu(A)$ for all $A \in \mathcal{B}$ and all $n \in \mathbb{Z}$.

(S7.2) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be probability spaces and $T : X \to Y$ be bijective such that both T and T^{-1} are measurable. The following are equivalent

- (i) T is measure-preserving.
- (ii) $\mu(B) = \nu(T(B))$ for all $B \in \mathcal{B}$.
- (iii) T^{-1} is measure-preserving.

(S7.3) Let $(X, \mathcal{B}), (Y, \mathcal{C}), (Z, \mathcal{D})$ be measurable spaces, $T : X \to Y, S : Y \to Z$ be measurable transformations.

- (i) $U_{S \circ T} = U_T \circ U_S$.
- (ii) U_T is linear and $U_T(f \cdot g) = (U_T f) \cdot (U_T g)$ for all $f, g \in \mathcal{M}_{\mathbb{C}}(Y, \mathcal{C})$.
- (iii) If $f: Y \to \mathbb{C}$, f(y) = c is a constant function, then $U_T(f)(x) = c$ for every $x \in X$.
- (iv) $U_T(\mathcal{M}_{\mathbb{R}}(Y,\mathcal{C})) \subseteq \mathcal{M}_{\mathbb{R}}(X,\mathcal{B}).$
- (v) If $f \in \mathcal{M}_{\mathbb{R}}(Y, \mathcal{C})$ is nonnegative, then $U_T f$ is nonnegative too, hence U_T is a positive operator.

- (vi) For all $C \in \mathcal{C}$, $U_T(\chi_C) = \chi_{T^{-1}(C)}$.
- (vii) If f is a simple function in $\mathcal{M}_{\mathbb{C}}(Y, \mathcal{C}), f = \sum_{i=1}^{n} c_i \chi_{C_i}, c_i \in \mathbb{C}, C_i \in \mathcal{C}$, then $U_T f$ is a simple function in $\mathcal{M}_{\mathbb{C}}(X, \mathcal{B}), U_T f = \sum_{i=1}^{n} c_i \chi_{T^{-1}(C_i)}.$
- (S7.4) Let (X, \mathcal{B}) be a measurable space and $T: X \to X$ be measurable.
 - (i) $U_{1_X} = 1_{\mathcal{M}_{\mathbb{C}}(X,\mathcal{B})}$
 - (ii) $U_{T^n} = (U_T)^n$ for all $n \in \mathbb{N}$.
- (iii) If $T: X \to X$ is bijective and both T and T^{-1} are measurable, then U_T is invertible and its inverse is $U_{T^{-1}}$. Furthermore, $U_{T^n} = (U_T)^n$ for all $n \in \mathbb{Z}$.

(S7.5) Let (X, d) be a compact metric space and $T : X \to X$ be a continuous mapping. For all $l \ge 1$, there exists a multiply recurrent point for T, T^2, \ldots, T^l .

(S7.6) For any $A \in \mathcal{B}$, let us recall that

$$\limsup_{n \to \infty} T^{-n}(A) = \bigcap_{n \ge 1} \bigcup_{i \ge n} T^{-i}(A).$$

Then

- (i) $\limsup_{n \to \infty} T^{-n}(A)$ is *T*-invariant.
- (ii) $\mu(A\Delta \limsup_{n\to\infty} T^{-n}(A)) \leq \sum_{k=1}^{\infty} k\mu(A\Delta T^{-1}(A))$. In particular, $\mu(A\Delta T^{-1}(A)) = 0$ implies $\mu(A\Delta \limsup_{n\to\infty} T^{-n}(A)) = 0$.